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l. Executive summary

This project develops methodologies, dgorithms, and automation tools for solving the  3-D linear
Boltzmann (“trangport”) equation” based on the discrete ordinates technique in paralle
environments.

The discrete ordinates (Sn) method? is one of the most accurate and versatile techniques used to
solve the “integro-differentid” form of the Boltzmann equation. The method, however, requires a
sggnificant amount of computer time and memory. To overcome this difficulty, new pardld
computing architectures have to be exploited. Effective pardlel Sn agorithms, accderation
formulations and iterative techniques are needed. Further, to save in engineer’ stime in developing
“effective’” modds, especidly for ared-life problem, an “expert” system is needed that accounts for
both numerica and parald processing factors. In summary, with this project, we are developing
methods and tools that significantly reduce both computer and engineer’ stime.

In thefirst year of the project, we have performed the following three tasks:
1) Demondrated the effectiveness and necessity of an adaptive differencing strategy based on
the three Kobayashi 3-D benchmark problems.(Refs. 3-5) Findings of this study is used for
our effortsin tasks 2 and 3.

2) Devedoped different angular multigrid acceleration agorithms; incorporated these
agorithmsinto the PENTRAN code, and examined the effectiveness of these agorithms for
different problem physics using the Kobayashi benchmark problem 1. Thusfar,
combinations of Simplified Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycle
angular multigrid dgorithms have proved to be very effective for alarge range of c-ratios.
We have achieved speedups as high as afactor of ~7.3 in the number of iterations, or a
factor of ~4.0 in the CPU time. Prdiminary studies indicate that other combinations such as
SAM+V-cycle+PCR or NI+V-cycle+PCR can be even more effective in certain problem
conditions. (Refs. 6 and 7)

3) Initiated development of an agorithm for an “expert” system for generation of mesh
digtribution for 3-D Sn trangport codes operating in apardle environment. Thusfar, we
have developed a semi-andytica formulation based on the first collison source that
provides the generd solution behavior throughout the problem. Thisis necessary in order to
be able to choose an appropriate mesh and differencing scheme. A computer program called
PENFC (Pardld Environment Neutrd- particle First Collision) has been developed. We
have examined different numerica options for solving the semi-andytica formulaion, and
measured the accuracy and performance of the different numerica techniques compared to
the Kobayashi benchmark problem 1.

. Work donein 1999-2000
11.1 Studieson adaptive differencing strategy:

To invedtigate the effectiveness of adaptive differencing strategy, we have used the three

Kobayashi 3-D benchmark problems that were developed for examining the accuracy of 3-D
trangport codes. These problems are paralelepiped or cubic in shape and contain three regions:
source, void, and shidd. Problems are solved for two dtuations: i) the materid in the source and
shidd regions is a pure absorber; ii) the materids in the source and shidd regions have a 50%
scattering ratio. The total cross-section of this materid is 0.1 ci?, while the total cross-section of
the void is 10* cm®. These problems, despite of their smplicity in materid and geometry, are very
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chdlenging for the Sn method because of two main reasors. 1) Particle flux drops by severa orders
of magnitude; 2) A purely or low scattering materia generaly result in the “ray-effects’.

We have solved dl the problems with the PENTRAN code (Ref. 8). PENTRAN includes an
adeptive differencing drategy which dlows for the use of different differencing schemes including
LD (linear diamond) linear fit, DTW (directiond thetaweighted) linear fit, and the EDW
(exponentid directiond weighted) exponentia fit, depending on problem physcs andlor user’s
choice. We achieve close agreement with the reference andyticd solutions, and have demonstrated
that the use of the adaptive differencing Srategy is necessary in order to obtain solutions with
minimd “ray-effects’. (Refs. 4 and 5) This is accomplished by consdering following messures: i)
Refined meshes are used within and in the vicinity of the source; ii) Coarse meshes are conddered
away from the source, s0 that larger spatid cells intercept angular rays as they spread out, thereby
reducing the “ray-effects’; iii) Adaptive differencing draiegy is used: DTW is used in the source
and void regions, and EDW is used in the coarse meshes
within the pure absorber and low scattering shield regions.

100

For example, Fig. 1 shows problem 3, referred to as the
shidd with dog-leg void duct, composed of three regions
source, void ducts, and shidd. The problem dgze is g

60x100x60 o, the cubic source region is 10x10x10 o, ° ff
and void duct penetrates through modd.

Fig. 2 compares the PENTRAN Sn reaults to the andyticd ;5
solutions dong x-axis a every 10 cm between 5 and 55 cm,
ay=9cmand z =35 cm. The maximum difference of
<26% occurs a x = 15 cm in a flux vaue that is smaler
than by more than four orders of magnitude rdative to the

source. Note that the Sn solutions are caculated in ~20 sec " 60
on one processor of the Penn State PC-Cluster (1686
processor) using a S20 level-symmetric quadrature set. Fig. 1 — Schematic of Kobayashi
benchmark problem 3
Case 3C pure absorber (y=95.0 cm, z=35.0 cm)
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Fig. 2— A sample comparison of Sn results with andyticd solutions



I1.2 Angular Multigrid Acceleration For Paralld S, Method
We have developed (Refs. 6 and 7) different multigrid formulations including the Smplified
Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycdle dgorithms, and their various
combinations with and without the standard acceleration scheme of partia current rebalance (PCR).
These dgorithms solve the Sn formulation for different angular grid orders g (WF)

q
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Where S, includes scattering, externa and fission sources. For dl dgorithms, when it is needed to

project coarse-grid (W*) angular fluxes onto the fine-grid (WA), i.e,, Y 9 = P9®9*y 9 e select

the angular flux in aparticular direction on W that is closest to a direction on W**, Thisis

accomplished by finding the minimum angle between direction vectors of WA and WA
n=1..N(N+2)T w"

co a-q®q+l q + +hq g+l+xq I?H' where - 2
S ) = ] iy mX m=1.MM +2) | W',M <N @

In case there is more than one minimum angle, the angular fluxes are determined by performing
smple arithmetic mean of the fluxesin these directions. To cadculate the errorsin the coarse-grid
angular fluxes, the fine-grid resduals in the source moments are used.

Findly, in order to conserve particles, we normalize the projected angular fluxes by using the
M (M +2)

aw 1yl

following balance equation: Y & = Y &** N(M) :
a Wq+lY g+l

n=1

Below, wewill discuss the formulations and performance of the different angular multigrid
agorithms developed in this studly.

a. Smplified Angular Multigrid (SAM)

Thisisa/-cycle multigrid formulation, which is cdled the Smplified Angular Multigrid (SAM)
scheme. In the SAM scheme, agloba approximate solution (i.e., angular fluxes) is obtained on a
coarse angular grid (e.g., Su/ Po, P1), and then this solution is projected (source moments and
boundary angular fluxes) onto afine angular grid (eg., S1o/ Ps) filtering out the low frequency error
components. Effectively, the calculation on the coarse-grid provides preconditioning for the fine-
grid iterations

b. Nested Iteration (NI)

A vaiation of the SAM scheme is the Nested Iteration, in which we use successively refined

multiple angular grids (eg., W?", WM, W' WA" W) We start on the coarsest angular grid (e.g., W2")
and solve for angular fluxes within certain convergence tolerance. These angular fluxes are then

used asthe initia solution for the next finer grid. This process is continued until we converge on the

finest grid (W).

c. V-Cycle
In the V-cycle dgorithm, we, firgt perform an iteration on the fine angular grid, and compute the
difference between the previous and the current iteration scattering sources for each cdll and
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direction. This differenceis cdled the residual. Residuds are then expanded into moments to be

used as source on the next coarse angular grid. We then perform a sweep on the coarse angular grid
to render the error terms. This processis continued until we reach the prescribed coarsest grid.

Using the closest direction approach, these error terms are projected back to the fine-grid to update
the angular fluxes and the scattering source. We then proceed to the next iteration with the updated
source. We cycle among the selected grids until a converged solution on the fine angular grid is
obtained. The angular multigrid V-Cycle formulation is described below:

Sweep H 1Y @1 = S on W with the initial guess Y **

g+l g+l

Computeresidud r ** = q%* - g2

Sweep H 9 = P9®9r 1 on W9 with the initid guess €™ =0

Update fluxes Y @1 =Y 9 + P%® %"1e% and scattering source % ® %

Sweep H ™Y ¥ =G on W™ with the nitial guess Y @**

whereH isthe transport operator, r isthe resdud, e isthe error, P is the projection operator, and

tilde represents the updated values.

d. Combinations of V-Cycle with the SAM and NI formulations

We have used SAM and NI
formulations to obtain starting guess
for the V-Cycle formulation. Figure 2
depicts the V-Cycle, and its
combinations with SAM and NI.

PERFORMANCE OF
MULTIGRID FORMULATIONS
We have implemented the new
multigrid agorithmsinto our

1aa

Figure 3: Kobayashi benchmark problem 1

VY
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SAM+

/ NI + V-Cvcle

Figure 2: V-cycle and its combination with SAM and NI

PENTRAN™ (Pardlel Environment Neutra-
particle TRANsport) 3-D pardlel Sn code, and
measured performance using the Kobayashi
benchmark problem 1 (Ref. 3), Fig. 3. We have
investigated the effect of avariety of physcd
parameters, including different scattering ratios,

coarse-
angular

and fine-grid convergence tolerances and
guadrature orders.

Usng the findings of Section I1.1, we have
developed PENTRAN models for this problem.
We have andyzed cases with different c-ratios
ranging from 0.6 to 0.99 using aleve-symmetric
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quadrature set. To examine the effect of pardle processing, we have partitioned the angular domain
into four subdomains (2 octants/ processor) and processed them on 4 processors of the LIONX
pardld PC Clugter at Penn State University.

The results of these studies have been presented in detall in Refs. 6 and 7. Here, we provide a brief
discussion on our important findings.

Effect of Coarse- and Fine-grid Tolerances
For the SAM dgorithm, for the c-ratio in arange of 0.6-1.0 and fine-grid tolerances of 1.e-04 — 1.e-
6, the coarse-grid tolerance should be in arange of 1.e-03 — 1.e-04.

Effect of c-ratio

SAM becomes more effective with the increasing c-ratio, resulting in asgnificant accderation as
high as ~7.8. SAM outperforms PCR by afactor of ~2.6 in iteration speed-up, however it requires
ggnificant (~2.6) computation time than the PCR.

Effect of Coarse- and Fine-grid Quadrature Orders

This study indicates that for an effective acceeration for problems with fine-grid quadrature orders
up to Sy, the coarse-grid quadrature order should be either Ss or S, considering the degree of the
problem’ s angular dependency. Beyond Sy for the fine-grid, the coarse-grid quadrature orders
should not be greater than S or S

Combinations of Angular Multigrid Formulations
In Table 1, we summarize various combinations of the angular multigrid formulations and the

Table 1. Comparison of speedups obtained by combined formulations®

Algorithm ITERATION SPEED-UP | CPU SPEED-UP
NO ACCELERATION 1.00 1.00
PCR 243 2.38
SAM 276 152
SAM+PCR 541 324
NESTED 1.83 137
NESTED+PCR 5.62 3.39
\Y 174 1.28
V+PCR 487 343
V+SAM 324 157
V+SAM+PCR 730 3.39
V+NESTED 276 158
V+NESTED+PCR 6.95 245

&c-ratio=0.6, S, for coarse-grid, S, for fine-grid, S, to Sy for
the NI coarse-grids, and coarse- and fine-grid convergence
tolerances of 5.e-02 and 5.e-04, respectively.

PCR acceleration. These tests have been performed for a c-ratio of 0.6, coarse and fine-grid
tolerances and quadrature orders of 5.e-02/5.e-04, and S10/Syo, respectively. For the Nested Iteration
(NI), we have started on S4, gradudly upgrading to S;o. Table 1 indicates that angular multigrid
formulations combined with PCR become very effective. SAM combined with PCR reduces the

CPU by afactor of ~3.43, while PCR done reduces by afactor of ~2.38. The combination of V-
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cycle, SAM and PCR can sgnificantly reduce number of fine-grid iterations, however, because of
the high cost of V-cycle, is not as effective in reducing the CPU time.

1.3 Expert system for automation of model preparation in a parallel environment

In this section, we discuss our effortsin developing an expert system that autometicaly develops an
effective modd consdering both numerica and pardld processing factors. Thistask significantly
impacts engineer’ stime, reliability of results, and eventualy computing time.

Following flow-chart depicts the mgor component of this expert system.

AutoCAD

v

PENFC

Parallel Environment ‘

Neutral-particle First Collision

¢ Cross Sections
Numerical and Parallel Spatial Mesh and <«
Processing Parameters  [~|  Differencing Scheme
: Select l
elector ;

v

Domain Decomposition
Strategy Selector

Parallel Performance
Model (PFM)

v

Effective Sy Model in
Parallel Environment

Fig. 4 — Flow-chart of the expert system for automation of mode preparation
in pardle environments

To date, we have developed a program to determine an initia flux distribution based on the first
collided neutrons. To reduce the computationa time of this program, we have developed a parale
verson using the MPI (message passing interface) library. Below, we provide a brief discusson the
PENFC (Pardld Environment Neutrd-particle First Collison) agorithm and its testing.

Formulation of uncollided flux in a 3-D geometry
Uncollided fluxes a any postion r indde a3-D mode can be caculated by

S (r®dr

el
S, (r_@e-é
re-of”

1
fo(n)=—c@dr¢ 3
=2 dr ©



where g isthe energy group index , f ;([) is the uncollided flux of the energy group g, S, (r¢) isthe
source strength (n/cn/s) of the energy group g, s g ISthetotd cross section of the energy group
g, V, isthe volume of the source region, and dr' isthe volume dement.

We have solved Eq. 3 viatwo approaches. spatid discretization and numerical integration.

a. Spatial Discretization
We discretize the volume of the whole modd into a number of fine meshes, and rewrite Eq. (3) as
18 S¢e

-éi'ds‘,gu_ﬂadr'
fe)=——a

2
G

where P isthetota number of source points, and §,; =V,S; is theintensity (n/s) of a point source of the

(4)

energy group g at the center of afine mesh, and S; is the average source strength (n/er®/ls) of the energy
group g within V; volume of the fine mesh.

b. Numerical Integration
Following some mathematica manipulation, Eq. 3 in spherical system of coordinate reduces to

Sg 2p

f;(L)=4pst,g,oQ

d] deq dn q e'St,g,lla (l- e'st,g,o(lb'la)) (5)

where S, isthe source strength (n/e/s) of the energy group g that is constant throughout the
source volume, |, isthe path length from the position 1 to the boundary of the source region and
l, - 1, isthe path length inside the source region, s ,  , isthetota cross section of the source
region of theenergy group g and s, , isthetota cross section of the region outside the source
region of the energy group g .

To solve the above double integrals, thus far, we have investigated three quadrature formulations
including trapezoida, Simpson, and 3/8-formula, and concluded that the trapezoidd method isthe
most effective gpproach.

Benchmarking of PENFC

We have examined the performance and accuracy of the PENFC based on the Kobayashi 3-D
benchmark problem 1, as was used in Section 11.2. Table 2 presents a sample comparison of the
PENFC results with the reference andytica solutions along the main diagond of the mode for the
two solution approaches.



Table?2

Flux distribution along the main diagonal of the Kobayashi benchmark problem 1

Position Analytical Spatial Discretization Numerical Integration
(cm) solution (1.0-cm mesh) (Trapezoidal)
Uncollided | % Difference | Uncollided | % Difference
5,55 5.957E+00 5.952E+00 -0.073 5.956E+00 -0.006
15,15,15 4.708E-01 4.661E-01 -0.993 4.698E-01 -0.213
25,25,25 1.700E-01 1.691E-01 -0.540 1.697E-01 -0.158
35,35,35 8.683E-02 8.645E-02 -0.447 8.670E-02 -0.154
45,45,45 5.251E-02 5.230E-02 -0.406 5.243E-02 -0.155
55,55,55 1.334E-02 1.329E-02 -0.343 1.332E-02 -0.133
65,65,65 1.459E-03 1.455E-03 -0.245 1.457E-03 -0.114
75,75,75 1.754E-04 1.750E-04 -0.208 1.752E-04 -0.099
85,85,85 2.246E-05 2.242E-05 -0.181 2.244E-05 -0.097
95,95,95 3.010E-06 3.005E-06 -0.163 3.008E-06 -0.087

Both methods yidld accurate solutions, while within and in the vicinity of the source, the discretized
method requires significantly more detailed meshing, and therefore considerably more computation
time. Based on these analyses, we have concluded that the numericd integration approach isamore
effective methodology for our gpplication. Currently we are examining the use of PENFC for
solving red-life problems.

I11.  Proposed Work: YEAR 2: 2000-20001

For the year 2 of this project, we propose to perform the following tasks:

Task 1. Acceleration scheme
Further testing of the multigrid formulations for red-life problems, such asthe VENUS-3
benchmark problem (Ref. 9) and a BWR core shroud smulation (Ref. 10), and andytica
andyses of these dgorithms for idedl problems. (Students 1 and 2)

Initiate development of apardld Smplified Pn (SPn) dgorithm. (Student 2)

Task 2. | ter ative techniques
Examination of other ADS dgorithms consdering different domain decompostion
drategies for different nuclear properties and boundary conditions. (Student 1)

Development of different multi- coloring iterative techniques, and measuring their
performance for different physical problems. (Student 2)

Task 3. Expert system for automation of input prepar ation

Further testing of the PENFC performance for red-life problems such asthe VENUS-3
benchmark problem; if needed, we will test theGaussan quadrature formulation. (Student 3)

Deveop an dgorithm for combining PENFC flux derivatives with the adaptive differencing
drategy for selection of appropriate differencing schemes. (Student 3)

Initiate development of a“performance modding” agorithm consdering different domain
decomposition dtrategies. (Student 3)
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Per sonnel
Prof. Alireza Haghighat and three graduate students from the Penn State Nuclear Engineering

Program will perform the above tasks. They will be assisted by Dr. Glenn E. Sjoden (US Air Force)
who is the primary author of PENTRAN.

Note that one of the students will be funded under another grant, and for Dr. Soden, we are only
asking for funds for two one-week trips.
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